NMC Library
Image from Google Jackets

How round is your circle? : where engineering and mathematics meet / John Bryant and Chris Sangwin.

By: Contributor(s): Publication details: Princeton : Princeton University Press, ©2008.Description: xix, 306 pages, 16 unnumbered pages of plates : illustrations (some color) ; 25 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 069113118X
  • 0691149925
  • 9780691131184
  • 9780691149929
Subject(s): DDC classification:
  • 516/.15 22
LOC classification:
  • QA484 .B79 2008
  • TA330 .B79 2008
Contents:
ch. 1. Hard lines -- 1.1. Cutting lines -- 1.2. The Pythagorean theorem -- 1.3. Broad lines -- 1.4. Cutting lines -- 1.5. Trial by trials -- ch. 2. How to draw a straight line -- 2.1. Approximate-straight-line linkages -- 2.2. Exact-straight-line linkages -- 2.3. Hart's exact-straight-line mechanism -- 2.4. Guide linkages -- 2.5. Other ways to draw a straight line -- ch. 3. Four-bar variations -- 3.1. Making linkages -- 3.2. The pantograph -- 3.3. The crossed parallelogram -- 3.4. Four-bar linkages -- 3.5. The triple generation theorem -- 3.6. How to draw a big circle -- 3.7. Chebyshev's paradoxical mechanism -- ch. 4. Building the world's first ruler -- 4.1. Standards of length -- 4.2. Dividing the unit by geometry -- 4.3. Building the world's first ruler -- 4.4. Ruler markings -- 4.5. Reading scales accurately -- 4.6. Similar triangles and the sector -- ch. 5. Dividing the circle -- 5.1. Units of angular measurement -- 5.2. Constructing base angles via polygons -- 5.3. Constructing a regular pentagon -- 5.4. Building the world's first protractor -- 5.5. Approximately trisecting an angle -- 5.6. Trisecting an angle by other means -- 5.7. Trisection of an arbitrary angle -- 5.8. Origami.
ch. 6. Falling apart -- 6.1. Adding up sequences of integers -- 6.2. Duijvestijn's dissection -- 6.3. Packing -- 6.4. Plane dissections -- 6.5. Ripping paper -- 6.6. A homely dissection -- 6.7. Something more solid -- ch. 7. Follow my leader -- ch. 8. In pursuit of coat-hangers -- 8.1. What is area? -- 8.2. Practical measurement of areas -- 8.3. Areas swept out by a line -- 8.4. The linear planimeter -- 8.5. The polar planimeter of Amsler -- 8.6. The hatchet planimeter of Prytz -- 8.7. The return of the bent coat-hanger -- 8.8. Other mathematical integrators -- ch. 9. All approximations are rational -- 9.1. Laying pipes under a tiled floor -- 9.2. Cogs and millwrights -- 9.3. Cutting a metric screw -- 9.4. The binary calendar -- 9.5. The harmonograph-- 9.6. A little nonsense! -- ch. 10. How round is your circle? -- 10.1. Families of shapes of constant width -- 10.2. Other shapes of constant width -- 10.3. Three-dimensional shapes of constant width -- 10.4. Applications -- 10.5. Making shapes of constant width -- 10.6. Roundness -- 10.7. The British Standard Summit Tests of BS3730 -- 10.8. Three-point tests -- 10.9. Shapes via an envelope of lines -- 10.10. Rotors of triangles with rational angles -- 10.11. Examples of rotors of triangles -- 10.12. Modern and accurate roundness methods.
ch. 11. Plenty of slide rule -- 11.1. The logarithmic slide rule -- 11.2. The invention of slide rules -- 11.3. Other calculations and scales -- 11.4. Circular and cylindrical slide rules -- 11.5. Slide rules for special purposes -- 11.6. The magnameta oil tonnage calculator -- 11.7. Non-logarithmic slide rules -- 11.8. Nomograms -- 11.9. Oughtred and Delamian's views on education -- ch. 12. All a matter of balance -- 12.1. Stacking up -- 12.2. The divergence of the harmonic series -- 12.3. Building the stack of dominos -- 12.4. The leaning pencil and reaching the stars -- 12.5. Spiralling out of control -- 12.6. Escaping from danger -- 12.7. Leaning both ways! -- 12.8. Self-righting stacks -- 12.9. Two-tip polyhedra -- 12.10. Uni-stable polyhedra -- ch. 13. Finding some equilibrium -- 13.1. Rolling uphill -- 13.2. Perpendicular rolling discs -- 13.3. Ellipses -- 13.4. Slotted ellipses -- 13.5. The super-egg -- Epilogue -- References -- Index.
Summary: 'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
Holdings
Item type Current library Shelving location Call number Copy number Status Date due Barcode
Book Book NMC Library Stacks TA330 .B79 2008 (Browse shelf(Opens below)) 1 Available 33039001509255

Includes bibliographical references (pages 297-302) and index.

ch. 1. Hard lines -- 1.1. Cutting lines -- 1.2. The Pythagorean theorem -- 1.3. Broad lines -- 1.4. Cutting lines -- 1.5. Trial by trials -- ch. 2. How to draw a straight line -- 2.1. Approximate-straight-line linkages -- 2.2. Exact-straight-line linkages -- 2.3. Hart's exact-straight-line mechanism -- 2.4. Guide linkages -- 2.5. Other ways to draw a straight line -- ch. 3. Four-bar variations -- 3.1. Making linkages -- 3.2. The pantograph -- 3.3. The crossed parallelogram -- 3.4. Four-bar linkages -- 3.5. The triple generation theorem -- 3.6. How to draw a big circle -- 3.7. Chebyshev's paradoxical mechanism -- ch. 4. Building the world's first ruler -- 4.1. Standards of length -- 4.2. Dividing the unit by geometry -- 4.3. Building the world's first ruler -- 4.4. Ruler markings -- 4.5. Reading scales accurately -- 4.6. Similar triangles and the sector -- ch. 5. Dividing the circle -- 5.1. Units of angular measurement -- 5.2. Constructing base angles via polygons -- 5.3. Constructing a regular pentagon -- 5.4. Building the world's first protractor -- 5.5. Approximately trisecting an angle -- 5.6. Trisecting an angle by other means -- 5.7. Trisection of an arbitrary angle -- 5.8. Origami.

ch. 6. Falling apart -- 6.1. Adding up sequences of integers -- 6.2. Duijvestijn's dissection -- 6.3. Packing -- 6.4. Plane dissections -- 6.5. Ripping paper -- 6.6. A homely dissection -- 6.7. Something more solid -- ch. 7. Follow my leader -- ch. 8. In pursuit of coat-hangers -- 8.1. What is area? -- 8.2. Practical measurement of areas -- 8.3. Areas swept out by a line -- 8.4. The linear planimeter -- 8.5. The polar planimeter of Amsler -- 8.6. The hatchet planimeter of Prytz -- 8.7. The return of the bent coat-hanger -- 8.8. Other mathematical integrators -- ch. 9. All approximations are rational -- 9.1. Laying pipes under a tiled floor -- 9.2. Cogs and millwrights -- 9.3. Cutting a metric screw -- 9.4. The binary calendar -- 9.5. The harmonograph-- 9.6. A little nonsense! -- ch. 10. How round is your circle? -- 10.1. Families of shapes of constant width -- 10.2. Other shapes of constant width -- 10.3. Three-dimensional shapes of constant width -- 10.4. Applications -- 10.5. Making shapes of constant width -- 10.6. Roundness -- 10.7. The British Standard Summit Tests of BS3730 -- 10.8. Three-point tests -- 10.9. Shapes via an envelope of lines -- 10.10. Rotors of triangles with rational angles -- 10.11. Examples of rotors of triangles -- 10.12. Modern and accurate roundness methods.

ch. 11. Plenty of slide rule -- 11.1. The logarithmic slide rule -- 11.2. The invention of slide rules -- 11.3. Other calculations and scales -- 11.4. Circular and cylindrical slide rules -- 11.5. Slide rules for special purposes -- 11.6. The magnameta oil tonnage calculator -- 11.7. Non-logarithmic slide rules -- 11.8. Nomograms -- 11.9. Oughtred and Delamian's views on education -- ch. 12. All a matter of balance -- 12.1. Stacking up -- 12.2. The divergence of the harmonic series -- 12.3. Building the stack of dominos -- 12.4. The leaning pencil and reaching the stars -- 12.5. Spiralling out of control -- 12.6. Escaping from danger -- 12.7. Leaning both ways! -- 12.8. Self-righting stacks -- 12.9. Two-tip polyhedra -- 12.10. Uni-stable polyhedra -- ch. 13. Finding some equilibrium -- 13.1. Rolling uphill -- 13.2. Perpendicular rolling discs -- 13.3. Ellipses -- 13.4. Slotted ellipses -- 13.5. The super-egg -- Epilogue -- References -- Index.

'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.

There are no comments on this title.

to post a comment.

Powered by Koha