000 05787cam a22004694a 4500
001 990003915030204851
003 MiTN
005 20230503141622.0
008 070807s2008 njuaf b 001 0 eng
010 _a 2007032801
020 _a069113118X
_q(cloth ;
_qalk. paper)
020 _a0691149925
020 _a9780691131184
_q(cloth ;
_qalk. paper)
020 _a9780691149929
035 _a(EXLNZ-01SUNY_NETWORK)991006645739704801
035 _a(OCoLC)163625336
_z(OCoLC)170057647
_z(OCoLC)173499122
_z(OCoLC)494508784
_z(OCoLC)864383587
_z(OCoLC)973705970
_z(OCoLC)981066390
_z(OCoLC)1022654483
035 _a(OCoLC)ocn163625336
040 _aDLC
_beng
_cDLC
_dC#P
_dUKM
_dBAKER
_dBTCTA
_dYDXCP
_dVP@
_dYBM
_dTSU
_dLMR
_dNOR
_dHLS
_dEUM
_dZWZ
_dOCLCQ
_dTUU
_dOCLCF
_dPHADU
_dOCLCQ
_dS3O
_dOCLCQ
_dBUF
_dOCLCQ
_dCEF
_dCPO
_dOCLCQ
_dIL4J6
_dOCLCO
_dOCL
_dUKMGB
_dMiTN
050 4 _aQA484
_b.B79 2008
050 0 0 _aTA330
_b.B79 2008
082 0 0 _a516/.15
_222
100 1 _aBryant, John,
_d1934-
245 1 0 _aHow round is your circle? :
_bwhere engineering and mathematics meet /
_cJohn Bryant and Chris Sangwin.
260 _aPrinceton :
_bPrinceton University Press,
_c©2008.
300 _axix, 306 pages, 16 unnumbered pages of plates :
_billustrations (some color) ;
_c25 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references (pages 297-302) and index.
505 0 0 _gch. 1.
_tHard lines --
_g1.1.
_tCutting lines --
_g1.2.
_tThe Pythagorean theorem --
_g1.3.
_tBroad lines --
_g1.4.
_tCutting lines --
_g1.5.
_tTrial by trials --
_gch. 2.
_tHow to draw a straight line --
_g2.1.
_tApproximate-straight-line linkages --
_g2.2.
_tExact-straight-line linkages --
_g2.3.
_tHart's exact-straight-line mechanism --
_g2.4.
_tGuide linkages --
_g2.5.
_tOther ways to draw a straight line --
_gch. 3.
_tFour-bar variations --
_g3.1.
_tMaking linkages --
_g3.2.
_tThe pantograph --
_g3.3.
_tThe crossed parallelogram --
_g3.4.
_tFour-bar linkages --
_g3.5.
_tThe triple generation theorem --
_g3.6.
_tHow to draw a big circle --
_g3.7.
_tChebyshev's paradoxical mechanism --
_gch. 4.
_tBuilding the world's first ruler --
_g4.1.
_tStandards of length --
_g4.2.
_tDividing the unit by geometry --
_g4.3.
_tBuilding the world's first ruler --
_g4.4.
_tRuler markings --
_g4.5.
_tReading scales accurately --
_g4.6.
_tSimilar triangles and the sector --
_gch. 5.
_tDividing the circle --
_g5.1.
_tUnits of angular measurement --
_g5.2.
_tConstructing base angles via polygons --
_g5.3.
_tConstructing a regular pentagon --
_g5.4.
_tBuilding the world's first protractor --
_g5.5.
_tApproximately trisecting an angle --
_g5.6.
_tTrisecting an angle by other means --
_g5.7.
_tTrisection of an arbitrary angle --
_g5.8.
_tOrigami.
505 0 0 _gch. 6.
_tFalling apart --
_g6.1.
_tAdding up sequences of integers --
_g6.2.
_tDuijvestijn's dissection --
_g6.3.
_tPacking --
_g6.4.
_tPlane dissections --
_g6.5.
_tRipping paper --
_g6.6.
_tA homely dissection --
_g6.7.
_tSomething more solid --
_gch. 7.
_tFollow my leader --
_gch. 8.
_tIn pursuit of coat-hangers --
_g8.1.
_tWhat is area? --
_g8.2.
_tPractical measurement of areas --
_g8.3.
_tAreas swept out by a line --
_g8.4.
_tThe linear planimeter --
_g8.5.
_tThe polar planimeter of Amsler --
_g8.6.
_tThe hatchet planimeter of Prytz --
_g8.7.
_tThe return of the bent coat-hanger --
_g8.8.
_tOther mathematical integrators --
_gch. 9.
_tAll approximations are rational --
_g9.1.
_tLaying pipes under a tiled floor --
_g9.2.
_tCogs and millwrights --
_g9.3.
_tCutting a metric screw --
_g9.4.
_tThe binary calendar --
_g9.5.
_tThe harmonograph--
_g9.6.
_tA little nonsense! --
_gch. 10.
_tHow round is your circle? --
_g10.1.
_tFamilies of shapes of constant width --
_g10.2.
_tOther shapes of constant width --
_g10.3.
_tThree-dimensional shapes of constant width --
_g10.4.
_tApplications --
_g10.5.
_tMaking shapes of constant width --
_g10.6.
_tRoundness --
_g10.7.
_tThe British Standard Summit Tests of BS3730 --
_g10.8.
_tThree-point tests --
_g10.9.
_tShapes via an envelope of lines --
_g10.10.
_tRotors of triangles with rational angles --
_g10.11.
_tExamples of rotors of triangles --
_g10.12.
_tModern and accurate roundness methods.
505 0 0 _gch. 11.
_tPlenty of slide rule --
_g11.1.
_tThe logarithmic slide rule --
_g11.2.
_tThe invention of slide rules --
_g11.3.
_tOther calculations and scales --
_g11.4.
_tCircular and cylindrical slide rules --
_g11.5.
_tSlide rules for special purposes --
_g11.6.
_tThe magnameta oil tonnage calculator --
_g11.7.
_tNon-logarithmic slide rules --
_g11.8.
_tNomograms --
_g11.9.
_tOughtred and Delamian's views on education --
_gch. 12.
_tAll a matter of balance --
_g12.1.
_tStacking up --
_g12.2.
_tThe divergence of the harmonic series --
_g12.3.
_tBuilding the stack of dominos --
_g12.4.
_tThe leaning pencil and reaching the stars --
_g12.5.
_tSpiralling out of control --
_g12.6.
_tEscaping from danger --
_g12.7.
_tLeaning both ways! --
_g12.8.
_tSelf-righting stacks --
_g12.9.
_tTwo-tip polyhedra --
_g12.10.
_tUni-stable polyhedra --
_gch. 13.
_tFinding some equilibrium --
_g13.1.
_tRolling uphill --
_g13.2.
_tPerpendicular rolling discs --
_g13.3.
_tEllipses --
_g13.4.
_tSlotted ellipses --
_g13.5.
_tThe super-egg --
_tEpilogue --
_tReferences --
_tIndex.
520 _a'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium.
540 _aCurrent Copyright Fee: GBP62.00
_c0.
_5Uk
650 0 _aEngineering mathematics.
650 0 _aGeometrical models.
650 0 _aGeometry, Algebraic.
650 0 _aGeometry, Modern
_xPlane.
650 0 _aGeometry, Plane.
700 1 _aSangwin, C. J.
_q(Christopher J.)
942 _2lcc
999 _c523076
_d523076