000 | 05787cam a22004694a 4500 | ||
---|---|---|---|
001 | 990003915030204851 | ||
003 | MiTN | ||
005 | 20230503141622.0 | ||
008 | 070807s2008 njuaf b 001 0 eng | ||
010 | _a 2007032801 | ||
020 |
_a069113118X _q(cloth ; _qalk. paper) |
||
020 | _a0691149925 | ||
020 |
_a9780691131184 _q(cloth ; _qalk. paper) |
||
020 | _a9780691149929 | ||
035 | _a(EXLNZ-01SUNY_NETWORK)991006645739704801 | ||
035 |
_a(OCoLC)163625336 _z(OCoLC)170057647 _z(OCoLC)173499122 _z(OCoLC)494508784 _z(OCoLC)864383587 _z(OCoLC)973705970 _z(OCoLC)981066390 _z(OCoLC)1022654483 |
||
035 | _a(OCoLC)ocn163625336 | ||
040 |
_aDLC _beng _cDLC _dC#P _dUKM _dBAKER _dBTCTA _dYDXCP _dVP@ _dYBM _dTSU _dLMR _dNOR _dHLS _dEUM _dZWZ _dOCLCQ _dTUU _dOCLCF _dPHADU _dOCLCQ _dS3O _dOCLCQ _dBUF _dOCLCQ _dCEF _dCPO _dOCLCQ _dIL4J6 _dOCLCO _dOCL _dUKMGB _dMiTN |
||
050 | 4 |
_aQA484 _b.B79 2008 |
|
050 | 0 | 0 |
_aTA330 _b.B79 2008 |
082 | 0 | 0 |
_a516/.15 _222 |
100 | 1 |
_aBryant, John, _d1934- |
|
245 | 1 | 0 |
_aHow round is your circle? : _bwhere engineering and mathematics meet / _cJohn Bryant and Chris Sangwin. |
260 |
_aPrinceton : _bPrinceton University Press, _c©2008. |
||
300 |
_axix, 306 pages, 16 unnumbered pages of plates : _billustrations (some color) ; _c25 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
504 | _aIncludes bibliographical references (pages 297-302) and index. | ||
505 | 0 | 0 |
_gch. 1. _tHard lines -- _g1.1. _tCutting lines -- _g1.2. _tThe Pythagorean theorem -- _g1.3. _tBroad lines -- _g1.4. _tCutting lines -- _g1.5. _tTrial by trials -- _gch. 2. _tHow to draw a straight line -- _g2.1. _tApproximate-straight-line linkages -- _g2.2. _tExact-straight-line linkages -- _g2.3. _tHart's exact-straight-line mechanism -- _g2.4. _tGuide linkages -- _g2.5. _tOther ways to draw a straight line -- _gch. 3. _tFour-bar variations -- _g3.1. _tMaking linkages -- _g3.2. _tThe pantograph -- _g3.3. _tThe crossed parallelogram -- _g3.4. _tFour-bar linkages -- _g3.5. _tThe triple generation theorem -- _g3.6. _tHow to draw a big circle -- _g3.7. _tChebyshev's paradoxical mechanism -- _gch. 4. _tBuilding the world's first ruler -- _g4.1. _tStandards of length -- _g4.2. _tDividing the unit by geometry -- _g4.3. _tBuilding the world's first ruler -- _g4.4. _tRuler markings -- _g4.5. _tReading scales accurately -- _g4.6. _tSimilar triangles and the sector -- _gch. 5. _tDividing the circle -- _g5.1. _tUnits of angular measurement -- _g5.2. _tConstructing base angles via polygons -- _g5.3. _tConstructing a regular pentagon -- _g5.4. _tBuilding the world's first protractor -- _g5.5. _tApproximately trisecting an angle -- _g5.6. _tTrisecting an angle by other means -- _g5.7. _tTrisection of an arbitrary angle -- _g5.8. _tOrigami. |
505 | 0 | 0 |
_gch. 6. _tFalling apart -- _g6.1. _tAdding up sequences of integers -- _g6.2. _tDuijvestijn's dissection -- _g6.3. _tPacking -- _g6.4. _tPlane dissections -- _g6.5. _tRipping paper -- _g6.6. _tA homely dissection -- _g6.7. _tSomething more solid -- _gch. 7. _tFollow my leader -- _gch. 8. _tIn pursuit of coat-hangers -- _g8.1. _tWhat is area? -- _g8.2. _tPractical measurement of areas -- _g8.3. _tAreas swept out by a line -- _g8.4. _tThe linear planimeter -- _g8.5. _tThe polar planimeter of Amsler -- _g8.6. _tThe hatchet planimeter of Prytz -- _g8.7. _tThe return of the bent coat-hanger -- _g8.8. _tOther mathematical integrators -- _gch. 9. _tAll approximations are rational -- _g9.1. _tLaying pipes under a tiled floor -- _g9.2. _tCogs and millwrights -- _g9.3. _tCutting a metric screw -- _g9.4. _tThe binary calendar -- _g9.5. _tThe harmonograph-- _g9.6. _tA little nonsense! -- _gch. 10. _tHow round is your circle? -- _g10.1. _tFamilies of shapes of constant width -- _g10.2. _tOther shapes of constant width -- _g10.3. _tThree-dimensional shapes of constant width -- _g10.4. _tApplications -- _g10.5. _tMaking shapes of constant width -- _g10.6. _tRoundness -- _g10.7. _tThe British Standard Summit Tests of BS3730 -- _g10.8. _tThree-point tests -- _g10.9. _tShapes via an envelope of lines -- _g10.10. _tRotors of triangles with rational angles -- _g10.11. _tExamples of rotors of triangles -- _g10.12. _tModern and accurate roundness methods. |
505 | 0 | 0 |
_gch. 11. _tPlenty of slide rule -- _g11.1. _tThe logarithmic slide rule -- _g11.2. _tThe invention of slide rules -- _g11.3. _tOther calculations and scales -- _g11.4. _tCircular and cylindrical slide rules -- _g11.5. _tSlide rules for special purposes -- _g11.6. _tThe magnameta oil tonnage calculator -- _g11.7. _tNon-logarithmic slide rules -- _g11.8. _tNomograms -- _g11.9. _tOughtred and Delamian's views on education -- _gch. 12. _tAll a matter of balance -- _g12.1. _tStacking up -- _g12.2. _tThe divergence of the harmonic series -- _g12.3. _tBuilding the stack of dominos -- _g12.4. _tThe leaning pencil and reaching the stars -- _g12.5. _tSpiralling out of control -- _g12.6. _tEscaping from danger -- _g12.7. _tLeaning both ways! -- _g12.8. _tSelf-righting stacks -- _g12.9. _tTwo-tip polyhedra -- _g12.10. _tUni-stable polyhedra -- _gch. 13. _tFinding some equilibrium -- _g13.1. _tRolling uphill -- _g13.2. _tPerpendicular rolling discs -- _g13.3. _tEllipses -- _g13.4. _tSlotted ellipses -- _g13.5. _tThe super-egg -- _tEpilogue -- _tReferences -- _tIndex. |
520 | _a'How Round is your Circle?' includes chapters on: hard lines; how to draw a straight line; four-bar variations; building the world's first rules; dividing the circle; falling aprat; follow my leader; all approximations are rational; all a matter of balance; and finding some equilibrium. | ||
540 |
_aCurrent Copyright Fee: GBP62.00 _c0. _5Uk |
||
650 | 0 | _aEngineering mathematics. | |
650 | 0 | _aGeometrical models. | |
650 | 0 | _aGeometry, Algebraic. | |
650 | 0 |
_aGeometry, Modern _xPlane. |
|
650 | 0 | _aGeometry, Plane. | |
700 | 1 |
_aSangwin, C. J. _q(Christopher J.) |
|
942 | _2lcc | ||
999 |
_c523076 _d523076 |