000 | 01363cam a2200385 a 4500 | ||
---|---|---|---|
001 | 2006013637 | ||
003 | DLC | ||
005 | 20190729104343.0 | ||
008 | 060427s2007 maua b 000 1 eng | ||
010 | _a 2006013637 | ||
020 | _a9781570918957 (hardcover) | ||
020 | _a1570918953 (hardcover) | ||
020 | _a9781570918964 (pbk.) | ||
020 | _a1570918961 (pbk.) | ||
040 |
_aDLC _cDLC _dDLC _dMiTN |
||
042 | _alcac | ||
049 | _aEY86 | ||
050 | 0 | 0 |
_aPZ7.M4783376 _bRab 2007 |
082 | 0 | 0 |
_a[E] _222 |
100 | 1 |
_aMcCallum, Ann, _d1965- |
|
245 | 1 | 0 |
_aRabbits, rabbits everywhere : _ba Fibonacci tale / _cAnn McCallum ; illustrated by Gideon Kendall. |
260 |
_aWatertown, MA : _bCharlesbridge, _cc2007. |
||
300 |
_a32 p. : _bcol. ill. ; _c25 cm. |
||
520 | _aRapidly multiplying rabbits are taking over the village of Chee, and soon there are so many that even the Pied Piper cannot get rid of them, but a girl named Amanda discovers a pattern that leads to a way to make the rabbits leave. | ||
650 | 1 |
_aRabbits _vFiction. |
|
650 | 1 |
_aFibonacci numbers _vFiction. |
|
650 | 1 |
_aSequences (Mathematics) _vFiction. |
|
655 | 7 |
_aInformational. _2local |
|
655 | 1 | _aFolklore. | |
700 | 1 | _aKendall, Gideon, | |
948 | _au329385 | ||
949 |
_aPZ7 .M4783376 Rab 2007 _wLC _c1 _hEY86 _i33039001164408 |
||
596 | _a1 | ||
903 | _a19847 | ||
999 |
_c19847 _d19847 |